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INTRODUCTION

The use of water-in-oil emulsion as a fuel has been offered as an
effective means for promoting clean combustion, reducing maintenance
requirements, and improving boiler efficiency. Many studies made during
the last decade have produced varied results, but the true merit of
emulsion burning has not been determined. [From an energy conservation
standpoint, the potential for reduction in operation and maintenance
costs is worth a detailed evaluation for Navy stationary boilers.

At the recommendation of the Naval Facilities Engineering Command,
the Naval Civil Engineering Laboratory (NCEL) procured an emulsion
system to determine the benefits of emulsion burning and its potential
for Navy applications. Since water can be dispersed in heavy fuel oil
much more stably than in light fuel o0il, emulsions of water in no. 6
fuel o0il (heavy fuel o0il) were considered for this evaluation.

Because of funding constraints and the delivery time of the hardware,

the overall effort was carried out in two steps:

1. FY81 -- System installed in a suitable boiler plant, and

preliminary tests conducted

2. FY82 -- Detailed performance evaluations made

This report is a summary of the results.

BACKGROUND
0il is a conventional boiler fuel. Because of cost advantages,

heavy fuel o0il, also called residual oil, is commonly used in relatively

large boilers. However, the burning of heavy fuel oil rather than light

T L 4 al e e Aast et atalal PP O S S S At ma - - ~a_ A
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fuel o0il is more involved because of the requirements for fuel handling,

environmental control, and routine maintenance.

Depending on the origin of the crude, heavy fuel oil can contain
varied amounts of chemical compounds that will form combustion products
harmful to the boiler or the environment or both. Therefore, research
in fuel o0il combustion has concentrated on methods for improving boiler
efficiency without sacrificing environmental quality. These efforts can
be classified into two broad categories: fuel additives and combustion
modification. With the former, chemicals are introduced into low quality
fuels (e.g., fuels containing high concentration of vanadium, sludge, or
other materials) so they can be burned in an environmentally acceptable
manner. Combustion modification uses mechanical means to achieve low
emissions.

For complete combustion, fuel oil must be properly atomized and
well mixed with the surrounding air. In practice, excess air must be
supplied to ensure complete combustion. A significant energy loss
occurs when the hot combustion products (the flue gas) are exhausted
through the stack. In order to maintain a boiler at high operating

efficiency, excess air must be held to a minimum.

Benefits of Water-in-0il Emulsions

Some water is always present in fuel oils. Since the water in oil
does not pollute upon combustion, it may be regarded as an attractive
additive. Deliberately introducing water in oil has aroused the interest
of many, because it is conjectured that by suspending water in oil to
form an emulsion, clean and complete combustion could be achieved.

Thus, boiler efficiency could be improved.

The benefits of emulsion burning are claimed to be derived from the
phenomenon "microexplosion." A drop of water-in-oil emulsion is physically
a drop of oil with small water particles suspended in it. During com-
bustion, these water particles receive heat from their surroundings and
eventually become superheated. A sudden increase in volume occurs due

to vaporization of the water particles. This "explosion" causes a drop

LI U G G W G M i VN P DV VN e - lm.

e




P———

T laa!

LT LT

Lt aus s ave

L a4 R as ate am

/B naas Sumn auste S Bt e

I I P U U Y U S VDAY G V. SU, U S S, P, coy v

of o0il to shatter into smaller pieces that result in (1) a secondary
atomization, and (2) more intimate contact between oil and its surround-
ing air. These are the fundamental requirements for complete combustion.

Thus, the potential benefits of emulsion burning are:

1. Reduced direct energy loss through the stack due to a lower

air requirement

2. Improved heat transfer due to cleaner boiler heat transfer

surfaces

In actual practice, some users have reported 3% to 4% increase in overall
boiler efficiency. However, others have reported little or no beneficial
effects, but cleaner combustion and boiler fire-side surfaces appear to

be reported by all.

Producing A Water-in-0il-Emulsion

Water-in-oil emulsions can be produced by several methods with or
without the addition of surfactants as stability improvers. The methods

consist of:

1. Venturi -- introducing water into the oil stream at the throat

of a venturi

2. Static mixing -- passing the proportioned mixture of water and

oil through a "static mixer"

3. Ultrasonic agitation -- introducing ultrasonic energy into the
mixture
4. Homogenizing -- mechanically blending the mixture at high

pressure and speed

5. Cavitation -- introducing water into the cavitation region

created by the oil flow
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The cavitation emulsification method was chosen for NCEL's test
work after the following items were considered: energy requirements,
emulsion quality (e.g., uniformity, stability, water particle sizes and
distribution, requirement for stability improving additive), continuous
production rate, cost, experience reported in the literature, and, most

importantly, availability.

TEST FACILITIES

Emulsification System

A commercial emulsification system that uses the cavitation principle
was procured. This system is designed to prepare water and no. 6 fuel
oil emulsions for in-line installations. The basic components of the
as-delivered system are motor, pump, oil flowmeter, water flowmeter,
emulsion chamber, series of solenoid valves to control the water flow,
and control box. Some modifications were made: two flow meters, and
four needle valves for vernier control of the waterflow were added, and
an alternate location for introducing water to the system (i.e., bypassing
the "emulsion chamber') was installed. The overall arrangement of this
modified system is shown schematically in Figure 1. As can be seen,
this system can be readily connected to the fuel lines so that the
burner can be operated either with or without emulsion by simple valve
manipulation. The actual installation of the system is shown in Figure 2.
During operation, the oil flowmeter sends a signal to the control
box which, depending on the flow rate, activates one or more of the
solenoid valves to admit water into the emulsion chamber. Solenoid
valve actuation is controlled by four independently adjustable potentio-
meters which apply a reference voltage to an electronic comparator.
When the output voltage of the flowmeter exceeds the reference voltage
selected for each valve, a relay is actuated to energize that solenoid
valve. For example, for oil flows between 1 and 2 gpm, no. 1 solenoid
valve opens; for 2 to 3 gpm, no. 1 and no. 2 solenoid valves open; and

so forth. In an emergency (such as when the burner is turned off by a
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: safety device), oil flow through the flowmeter will cease, and all the
i!! solenoid valves will close, thus providing a fail safe operation. An

. overpressure sensing switch is provided to interrupt power to the oil
pump in case the pump discharge pressure rises above a preset safe
limit. The system can be easily turned on or off by pushbutton switches

- at the control box.
Boilers

E

i. An important requirement for the test boiler was that it be capable
§ of firing heavy fuel oils. The boilers at the Naval Weapons Center
(NWC), China Lake, Calif., were chosen for this purpose because they

were the most accessible to NCEL. The No. 4 boiler in Plant No. 1 was

k]

v— -
N A . kY .

- used for the preliminary tests, while the No. 8 boiler in Plant No. 3

was used for all the detailed performance evaluation work.

. g

- These boilers are primarily used for utility heating and normally

: carry a higher load during the day time of week days. The actual boiler
loads varied, depending on the outside air temperature, but they always
carried a minimum load of approximately one-third the rated capacity

during the test periods.

Boiler No. 4. This is a water-tube, single-burner boiler that can
be fired either on no. 6 fuel o0il or on natural gas. A steam atomiza-
tion nozzle is used for firing oil. This boiler produces 125-psi satu-
rated steam and has a rated capacity of 20,700 1b/hr. It was previously
used by NCEL for demonstrating waste oil burning (Ref 1) and was chosen
because of its adaptability for experimental work. A partial view of
this boiler and the piping for the emulsion system leading to the burner

is shown in Figure 3a.

Boiler No. 8. This is also a water-tube, single-burner boiler, but
it is fired only on no. 6 fuel oil. Again, a steam atomization nozzle
is used. The boiler produces 100-psi saturated steam and has a rated
capacity of 20,000 lb/hr. It was chosen for all the detailed performance

evaluations because it could only be fired on no. 6 fuel oil, thus
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. eliminating any concern for cost differentials for fuels.* The front

el face of this boiler and the emulsion system as installed are shown in

T

Figure 3b.

P

l’ l’ " l.

Instrumentation

.
.

-

In addition to the standard instrumentation for these boilers, an
automatic stack gas analysis system was installed to continuously monitor

the stack gas emissions. The essential components of this system are a

.
[
.
’
e
.
-

heated sample line, a sample conditioning system to quickly remove
moisture in the sample gas (drying by refrigeration), a stack gas tem-
perature probe, a logic system to control the overall operation and
automatically actuate the appropriate calibration gas valves for cali-
brating the gas analyzers (oxygen, carbon monoxide, nitrogen oxides) at
preselected time intervals, calibration gases, and a four-channel strip
chart recorder to record the stack gas temperature and outputs from the
gas analyzers. A schematic of this system is shown in Figure 4, while

the front and interior views are shown in Figure 5.

PERFORMANCE CALCULATIONS

The performance evaluations were based on energy conservation and
environmental impact because these are the most important considerations
in any combustion system performance. Therefore, the overall boiler

efficiencies and the pollutant emissions at these efficiencies when

I SR
IR T N

burning no. 6 fuel oil alone or when burning emulsions at several water 1

concentrations were measured and compared. The maintenance requirements

- and long-term effects on boiler components were then determined only if 1
f» significant advantages of burning the emulsions could be demonstrated
E! from test results. This report describes only the subjects relevant to
f the determination of boiler efficiency and pollutant emissions.
d
t. *Natural gas is cheaper than fuel oils.
4
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Fuel

The fuel for the tests was a low sulfur, no. 6 fuel oil that con-
formed to the local air pollution control regulations which specify
<0.5%. It was drawn from a 25,000-gallon underground tank. This large
a tank required fuel delivery from several tank cars. Since some varia-
tions in fuel properties always existed among the deliveries, only the
average typical properties are meaningful.

The fuels delivered during the test period had an average gravity
of 20.4 degrees API at 60°F which corresponds to a specific gravity of
0.9315 and a density of 7.757 1lb/gal at 60°F. Based on this average
gravity and the data given in Reference 2, the following composition is

estimated and used for all the calculations described in this report:

Weight
Components (%)
Carbon 86.54
Hydrogen 11.14
Sul fur 0.47%
Nitrogen 0.20
Oxygen 0.50
Ash 0.05
Moisture 1.10
Total 100.00

2NWC analysis

In addition, a high heating value was estimated as 18,752 Btu/lb. From
Reference 3, the coefficient of thermal expansion of an oil in the
temperature and gravity ranges of interest is 0.000385/°F. The density p
of this oil at temperatures T other than 60°F can, therefore, be calculated

from the density at 60°F (p60) as follows:

= p6o lh_ (1)
p 1 + 0.000385(T - 60) gal
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Combustion Calculations

The combustion of a petroleum fuel such as that used for the tests

in air will produce CO, CO,, SOZ’ H20, etc. When all the carbon, hydrogen,

2
and sulfur in the fuel are converted respectively to CO,., H, 0, and SO _,

2
the combustion process is defined as complete. The amount of air theo-
retically required for completing the combustion is called stoichiometric
air. In order to promote complete combustion, more air than is theoret-
ically required is always supplied for all combustion processes. This
additional air is called the excess air and is expressed in terms of a
percentage of the stoichiometric air (for example, 15% excess air).

The stoichiometric air requirement for a fuel of known composition
can be readily calculated, and the amount of excess air for an actual
combustion process is usually determined from the oxygen content in the
combustion products. Some basic calculations are discussed here. Con-

sider the following reactions:

C + O2 > CO2
1 mole + 1 mole > 1 mole
12 1b + 32 1b = 44 1b
2H2 + 02 > 2H20
2 moles + 1 mole » 2 moles
4 1b + 32 1b = 36 1b
S + O2 > 802

1 mole + 1 mole ~» 1 mole

32 1b + 32 1b 64 1b

Since equal volumes of gases at any given pressure and temperature
contain the same number of molecules (Avogadro's law), the weights of
equal volumes of gases are, therefore, proportional to their molecular
weights. In the above reactions, the second lines represent the volume
relationships, and the third lines represent the weight relationships.

(Note that there is a balance in the weight but not in the volume.)
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Thus, 8/3 pounds of oxygen is theoretically required to burn completely
1 pound of carbon; 8 pounds of oxygen is required to burn 1 pound of
hydrogen; and 1 pound of oxygen is required to burn 1 pound of sulfur.
Based on the above, let C, H, O, N, and S represent the weight
fraction of the chemical elements in a fuel. The oxygen theoretically

required to completely burn this fuel (stoichiometric oxygen) will be

=C+38 (H - -> + S, 1b oxygen/lb as~fired fuel

= 3.32

the stoichiometric air requirement will be

4.32[% cC+8 (H - g) + S]w, 1b/1b as-fired fuel
Let
Xa = excess air, weight fraction of stoichiometric air
02, CO2 = volume or mole fraction of 02, CO2 in dry combustion

products

A = (8/3)C + 8[H - (0/8)] + S = the theoretical oxygen
requirement, constant for a given fuel

B = 0.7685/0.2315, the weight ratio of nitrogen and oxygen

in air

Since the volume of a gas in number of moles is equal to the weight

divided by its molecular weight,

*The nitrogen in the fuel is very small compared to that in the combus-
tion air and is therefore neglected.
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Xa°A/32 = moles of oxygen
C/12 = moles of carbon dioxide
H/2 = moles of water vapor
(1 + Xa)~A'B/28 = moles of nitrogen in the combustion air

From these expressions, the following can be derived for dry combustion

products (water vapor is not considered):

21 A'Xa
O2 = 21 AKX +56C + 264(1 + X)-AB (volume'fract1on of _
a a oxygen in dry combustion
products)
(56 C + 24 A-B)-0
X = £ (2)
a 21 A - (21 A + 24 A’B)'O2
7C-(7+8B) C-O2
co, = 7C+3AB (3)

Equations 2 and 3 are helpful in monitoring boiler operating conditions.
Using the average fuel composition presented earlier in the text table,

one obtains A = 3.199 and B = 3.320. Equations 2 and 3 reduce to

4.515 02

X, T T-4.79% 0, (2")

Cco

2 0.160 - 0.767 02 (3"

These equations are plotted as curves A in Figure 6. Curves B in this
figure are for a fuel of slightly different composition. A comparison
of curves A and B shows that O2 is fairly insensitive to small variations
of fuel compositions. Therefore, in addition to being a reliable indi-
cator of the presence of excess air, 02 is more desirable for monitoring
boiler operations than COZ’ which can be used to verify the consistency

of 02 measurements.
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Boiler Efficiency Calculations

a

The following two methods were used for determining boiler efficiency:

Output/Input Method. Since a boiler is intended for producing

steam, its efficiency may be measured by its effectiveness in producing
usable steam to be exported; i.e., the ratio of the energies in the

steam exported and the corresponding fuel consumed. Figure 7 shows

R T T
. . AR PR S
. [ et BN
Lo [ 5o oa

notations for the boiler efficiency calculations involved.
Based on experience, the quality x of the exported steam closely

equals 0.98. At the measured steam pressure p, the steam enthalpy hS

I

can be calculated as follows:

h = (1 - x) he + x hg (4)

where hf and hg are, respectively, the enthalpies of saturated liquid

water and steam at pressure p. Since the fuel is used to heat the

SNt ey . b AN
e e .2'

feedwater and convert it to steam, the energy output is#*

=
]

out ws(hs i hw) (%)

where WS total exported steam during some time interval, 1b

=
1

hw (p,T), feedwater enthalpy

WS was measured with a conventional orifice type flowmeter and integrator
t‘ . at the boiler plant.

1 The energy input to the boiler consists of the sensible heat in the
water and oil and the heat of reaction from burning the oil -- the high

}f heat value HV. Let WO and Cpo be, respectively, the total amount of oil
4

*Due to the large thermal inertia of a boiler, instantaneous values,
especially for energy measurements, are often misleading. Only quanti-
ties measured for a sufficiently long period of time are considered
meaningful and are therefore used throughout this discussion.

11
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consumed during some time interval, and the constant pressure specific
heat of the oil; also let Ww and pr be those for the water in the

emulsion. The total energy input to the boiler will be

Qin = wo P HV o+ (wo Cpo * ww pr)(Te - Tr) (6)

where Te is the temperature of the emulsion, and Tr is the reference
temperature for computing the heating value. The o0il flow was measured
with a turbine rate meter and a positive displacement cumulative meter.
The water flow was measured with a rotameter and a positive displacement
cumulative meter. During the tests, the flowrate meters were used to
obtain the desired conditions, but only the total flows from the positive
displacement meters were used for efficiency calculations.

From above, the average boiler efficiency n over a suitably chosen

period of time can be calculated as

W((th_ =-h)
n = = 5 S v (7)
Q. wo-HV + (w0 Cpo + ww pr)(Te - Tr)

and the water concentration ¢ of the emulsion as

¢ = —w (®)

Heat Loss Method. This method is basically different from the

Output/Input Method and, therefore, can be used to verify the consis-
tency of the test data and the calculated results. Heat is lost from
the boiler primarily through the hot stack (or flue) gas exit and, to a
lesser extent, through radiation and convection from boiler exterior
surfaces, through heat contained in the blowdown waters, and through the
miscellaneous steam-operated boiler accessories. Useful energy is,
therefore, the difference between the energy released by fuel (Qin
described earlier) and the losses. The average boiler efficiency is,

therefore

12
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Q. - losses
in losses

n = -——-—-—Q = 1 - _Q (9)

’!’ in in
r.

o Among all the heat losses, only the stack loss is highly variable.

r?’f'f";--rr-nr".'.. ey
PSRN ot Ve
. . . . R - .

Its variability depends on the amount of excess air and the stack gas
temperature which is affected by the boiler load and the cleanliness of
the boiler gas-side heat transfer surfaces. For a given boiler operating
at a more or less constant steam pressure and, hence, at a constant
temperature, the radiation and convection losses through the fixed
boiler exterior surfaces are practically a constant. At steady operating
conditions, the losses due to blowdowns and operation of auxiliary
equipment are also practically a constant. Consequently, only the
losses through the stack require detailed discussions.

Heat loss through the stack can be considered in two parts: 1loss

carried away by dry stack gas, and loss by water vapor.

(a) Loss Due to Dry Stack Gas. From Reference 4, the weight of

dry stack gas is approximately

.o 44 CO, + 32 0, + 28 N, + 28 CO .12
g 12(Co, + C0) 32

The CO measured during all the tests was very small (<100 ppm) and,

therefore, can be neglected from the above expression. Since

o8 N, = 1-0C0, -0,

the above expression is simplified to

3 3 )( 7+ O2 + 4 CO2 )

: wg = <C + H S 3 Coz , 1b/1b of as-fired fuel (10)
&

f‘
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and the

loss due to dry flue gas in % of as-fired fuel,

L = W C (T -T.)/HV 11
g g pg(g 2/ (11)
where Cpg = mean specific heat of dry stack gas (Figure 7 of Ref 4)

Tg = stack gas temperature

Ta = inlet air temperature
Note that Wg can be calculated from Equation 10 using either both the 02
and the CO2 measurements or only the 02 measurement in conjunction with
Equation 3.

(b) Loss Due to Water Vapor. The water vapor in stack gas (in

1b/1b of as-fired fuel) comes from:

Com

Moi

Moi

Wat

where

Let

LU W S WAL R

9 H

bustion of hydrogen in the fuel

sture in the as-fired fuel = FM

sture in the combustion air (1 + Xa) A+-9/0.2315
= (.18 (1 + Xa)
er for making the emulsion = FEW

¢ =~ 0.013 1b/1b of dry air, specific humidity of air, and

A = 3.199 1b of stoichiometric oxygen per lb of as-fired fuel for
the fuel used in the tests

enthalpy of water vapor at the stack gas temperature Tg

"

enthalpy of liquid water at the fuel temperature Tf

mean specific heat of water vapor in air = 0.47 Btu/lb

14
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The loss due to water (in % of as-fired fuel) will be:

0.18 CRa(l + Xa)

(h,- h,)
D S FEW
Lo = T (9H+FM+1-FEW>+ HV (12)

c. Loss Due to Radiation and Convection. As discussed earlier,

. s e
v ST
AL .o

this loss is more or less a constant. It can be estimated using the
standard radiation loss chart of American Boiler Manufacturers Association
or can be found in Reference 4.

Assuming 1% unaccounted-for losses, the efficiency of the boiler by
the heat loss method may be computed from Equation 9 using Equations 11,
12 and standard radiation loss chart (Ref 4).

TEST DESCRIPTION

i ,"*‘;"".;".w:,"l‘."'_'."‘.'".', ""‘ oo

As discussed earlier, boiler efficiency is a function of the excess
air or the oxygen concentration in the stack gas. Since the oxygen
concentration at a given firing rate can be set more or less at any
level (not a unique quantity), additional comstraints have to be imposed.
For this, the smoke level and CO concentration were chosen as the limiting
constraints; that is, the burner air was adjusted so that the oxygen
concentration was at the lowest possible level without it producing
environmentally unacceptable smoke or CO levels. Bacharach smoke spot
number 6 and CO concentration of 100 ppm were used as the upper limits,

During tests at a given stabilized steam load, the burner air was
adjusted to the minimum level while either the Bacharach smoke spot
number was 6 or less or the CO concentration was 100 or less or both.

This adjustment was done in two steps:

1. The fuel valve opening was adjusted so that the correct amount
of 0il was delivered to the burner in order to maintain the

steam pressure and to meet the steam demand.

KRR S ob -
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2. The stack damper was adjusted so that minimum oxygen concen-
tration in the stack gas consistent with the smoke and CO

constraints was achieved.

Step 1 was necessary because the fuel valve is a volumetric control
device. Therefore, when an emulsion passes through the valve, for the
same volumetric flow, the actual amount of o0il delivered to the burner
nozzle is decreased by the amount of water in it. Insufficient oil
means insufficient heat input which causes steam pressure to drop and
the boiler to be unable to meet the steam demand. Therefore, when
emulsion is fired, the fucl valve must be opened to an appropriate
amount to compensate for this effect. Since the water in an emulsion
(or, fuel) actually displaces the oil, increasing the water while holding
all boiler settings unchanged would result in an increase in excess air
for the combusion process. This effect is readily seen by the apparent
increase in oxygen concentration in the stack gas as shown in Figure 8
(see also analysis in Appendix A). This excess air increase means the
combustion is cleaner, which often leads an observer to believe that
emulsion burning is more efficient.

The parts of the boiler where these adjustments were made are shown
in Figure 9. The adjustments, which took about 30 minutes, were based
on the stack gas oxygen concentration readings.

The water concentration in the emulsion was set by using the four
needle valves upstream of the location where the water is injected into
the emulsion chamber; this adjustment was based on the readings of a
rotameter for water flow and a turbine flowmeter for oil flow. Since
these flow rate meters have relatively fast responses, they rarely give
stable readings; but they were satisfactory for setting and monitoring
the water concentrations in the emulsion. Due to the large thermal
inertia and intermittent operations of boiler controls and steam-using
devices (being the inherent nature of boilers), only time-averaged
quantities are meaningful. Therefore, the actual flow rates of water
and oil were obtained from positive displacement flow integrators for a

sufficiently long period of time (10 to 15 minutes).

16
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Following the procedure outlined, time-averaged data were obtained
for several boiler steam loads. At each boiler load, the burner was
first fired on no. 6 fuel o0il (no water) to establish a set of baseline
data and then on emulsions at four water concentrations (3%, 6%, 9%, and
12%). Data recording for each condition began after the adjustments
were made and stable running conditions were achieved. The entire set
of data was taken every 10 or 15 minutes for several times to minimize

human errors and provide a sound basis for averaging.

TEST RESULTS

In the early part of the tests, Boiler No. 4 was used. These tests
were of a preliminary nature and were intended primarily for demonstrat-
ing the operatiocnal aspects of the emulsification system in an in-service
boiler. No elaborate adjustments were made, and the boiler was operated
at water concentrations between 0 and 15% in the same manner as burning
no. 6 oil. Approximately 6,000 gallons of no. 6 oil were consumed
during these tests. No difficulties of any kind were encountered. No
operational difference was experienced between burning no. 6 oil and
emulsions.

All the detailed evaluation work was done using Boiler No. 8. The
results presented below are for the boiler operating at minimal oxygen
(or, minimal excess air) subject to the constraints of not exceeding
Bacharach smoke spot no. 6 or CO concentration of 100 ppm in the stack
gas. This was successfully achieved by the adjustments. Due to a mild
winter and measures taken to conserve energy, the possible steam loads

varied only between 5,400 and 9,200 1b/hr during the entire test period.
Emulsions

Four water concentrations were used for each of the several steam
loads tested. Samples of these emulsions were taken during each test

and visually examined under a microscope to determine their qualitative

features. It was found that the water particles were smaller than 10 pm

17
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in diameter and were uniformly dispersed in the oil. A comparison of

these emulsions is shown in Figure 10. As expected, dense water particle
distribution is associated with high water concentration.

Since no. 6 fuel o0il is a very viscous fluid, and its density is
fairly close to that of water, the emulsions were expected to be stable.
One emulsion sample was examined under a microscope at the time of the
tests and then four months later; no appreciable differences were dis-
cernible. Judging from this, the storage life of these emulsions at
room temperature is very likely to be indefinite.

Also of great interest was determination of the role and contribu-
tion of the emulsion chamber in the overall emulsification system. To
this end, an alternate location downstream of the emulsion chamber was
chosen to inject water into the system (see Figure 1). The emulsion
produced in this manner was not visibly different from that produced
through the emulsion chamber in both microscopic features and boiler
firing. This result is believed to be primarily due to the high shear
rate taking place in the pump and the high recirculation rate of the
mixture in the system. Based on the pump capacity and the firing rate,
about 90% of the mixture is recirculated. Therefore, the contribution

of the emulsion chamber would be unimportant.

Emissions

The emissions from an oil-fired boiler consist primarily of sulfur
oxides, unburned hydrocarbons, carbon monoxide, nitrogen oxides, and
smoke. Since oil is regulated through its sulfur content and unburned
hydrocarbons are the result of incomplete combustion that can be indicated
by the presence of carbon monoxide, only carbon monoxide, smoke, and
nitrogen oxides were monitored.

Figures 11 and 12 summarize, respectively, the average Bacharach
smoke spot number and the carbon monoxide concentration measured during
all the tests, plotted against water concentration in the fuel. Since
these measurements are actually the limiting constraints used for adjusting
the boiler, they also describe the operating envelope for all the tests

conducted. In Figures 11 and 12, the points on the vertical axis are

18
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the baseline data, that is, for no. 6 oil burning. All other points are
for emulsion burning. The merits of emulsion burning relative to burning
only no. 6 oil, therefore, may be seen from these data. Other than the
relatively large departure® from the main group of data points at the
high boiler loads, there appears to be a slight trend toward decreasing
smoke and carbon monoxide emissions as the water concentration increases.
Emulsion burning appears to result in lower emission levels.

The emission of nitrogen oxides for the same operating coanditions
is shown in Figure 13; the same qualitative features as described earlier
are found. The oxygen concentration in the stack gas for all the test
conditions was adjusted (fuel valve and stack damper) to between 0.89%
and 1.5% according to the procedure described in the TEST DESCRIPTION
section. Figure 14 is a set of data illustrating the achievable oxygen
(or excess air) reduction through these adjustments. The smoke and
carbon monoxide levels are slightly increased at low oxygen, but the
boiler efficiencies are increased by about 2 percentage points, a very
significant improvement. Figure 15 is a summary plot that illustrates
the low levels of oxygen achieved and the corresponding boiler efficiencies

for all the tests conducted.

Boiler Efficiencies

Boiler efficiencies were computed based on data using both output/
input and heat loss methods. Enough time was allowed during each data-
taking period to be able to obtain meaningful averages. The data sheets,
including reduced results and summaries, are presented in Appendix B.

All the efficiencies computed are for minimum oxygen (or excess air)
conditions obtained after fuel valve and exhaust damper adjustments were
made and stable readings were achieved. Therefore, they may be regarded
as the maximum achievable efficiencies subject to the environmental
constraints on smoke and CO levels. These results are plotted against
both boiler steam output and water concentration in the fuel (or emulsion)
as shown in Figures 16 and 17. The results presented in Figures 15, 16,

and 17 show that:

*Believed to be due to a different tank of oil (tank no. 2) being used.
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1. The efficiencies obtained by the heat loss method exhibit less

scatter than those by the output/input method.

2. The efficiencies tend to decrease with the increase of both

boiler steam output and water concentration in the fuel.

3. Emulsion burning appears to result in lower, instead of improved,

boiler efficiency.

Figure 18 is a summary plot of the net stack gas temperature versus
boiler load for all the test conditions. It shows that this temperature
is reasonably low and increases with the boiler load, as is generally

the case. This result is attributable to the clean fire side boiler

heat transfer surfaces and efficient boiler operating conditions.

To compute dry stack gas loss (Equation 10), both 02 and CO2 mea-
surements are required, but during the tests, the CO2 analyzer did not
perform consistently. Since there is a fixed relationship (Equation 3)
between CO, and O2 for a given fuel, calculated values were substituted

2
for all the CO, measurements. Thus, the efficiency by the heat loss

method becomeszdependent on 02 measurements alone, and the results would
necessarily be subject to less random scatter. The efficiency obtained
by the output/input method, on the other hand, is based totally on
independent measurements of flows and is therefore subject to more
experimental errors. As a result, more scatter was expected for the
efficiencies computed by the output/input method than by the heat loss
method.

The test procedure required that the boiler be adjusted to its most

efficient operating condition before data taking began. Therefore, the
margin for the emulsion to further improve the boiler efficiency was

.: very narrow. At this point, it should be noted that the results of
microexplosions, due to the water particles in an emulsion, are the
basis for the claim that complete combustion is promoted with minimal
combustion air. Therefore, since the boiler was operated at very low

i" oxygen (~1%), which corresponds to ~5% excess air, and since the indicator

‘e 20
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for incomplete combustion CO was consistently at low levels (<90 ppm),
it is rather doubtful that additional benefits, if any, might result
from microexplosions. Furthermore, water in fuel extracts a finite
amount of energy from the fuel (~1% for 14% water in fuel). These
explanations may partially answer why somewhat lower boiler efficiencies

result when burning emulsions.

Boiler Operations

Water in no. 6 fuel oil emulsions could be fired in the same manner
as no. 6 oil without difficulties. Other than the installation of the
emulsification unit, no modifications to the boiler were necessary.
Since the emulsions were switched on only after the boiler attained
steady operating conditions with no. 6 o0il, it is not known whether they
could be successfully fired to start up a cold boiler.

When the burner fuel is first switched from no. 6 o0il to emulsions,
the immediate and apparent change is a cleaner, shorter, bushier, brighter
flame. These flame characteristics readily lead one to believe that a
better and more efficient combustion condition has been achieved. Since
the air admitted to the burner under this situation remains unchanged
while a portion of the oil is displaced by the water, this observation
is but the result of a "leaner" combustion condition. To maintain the
same steam output, more fuel (oil plus water) must be admitted to the
burner. Once the fuel valve is opened up to compensate for this oil
deficiency to meet the steam demand, the flame changes back to its

original appearance.

CONCLUSIONS

This test program was carefully planned and executed to determine
the measurable benefits of burning water-oil emulsions as fuels in a
Navy boiler. Emulsions with water concentrations up to 15% in no. 6 oil

can be fired in the same manner as firing straight no. 6 oil. Since

21




-4

LA Al A oa

\aaa a
-

water in the emulsion actually displaces the oil, the volumetric flow of
the emulsion must be increased to maintain the steam pressure and to
meet the steam demand. Any benefits of burning emulsions are, at best,

ambiguous.
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Figure 5. Automatic stack gas analysis system.
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Figure 16. Performance of emulsion burning as a boiler fucl -
boiler efficiency versus steam output.
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Figure 18. Stack gas net temperatures at all test boiler loads.
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Appendix A

EFFECTS OF SWITCHING FROM OIL TO EMULSION

The o0il flow control valve of a burner is a volumetric device. At
a given volumetric flow of 0il and the air intake settings (normally
coupled to the oil flow), switching from oil to water-in-oil emulsion
means a decrease of the oil flow by the amount of water in it. As a
result, the air supplied to the combustion system becomes excessive.
Excess air is a primary measure of energy loss through the stack. Thus,
switching from 0il to emulsion without properly adjusting the flow
controls to compensate for this effect will cause the boiler to run
inefficiently.

Following the discussions given in the text on combustion calcula-

tions, let

A = 8 C+81-0+8S = stoichiometric oxygen requirement,

3 1b oxygen/1b fuel

o]
]

excess air, % weight of stoichiometric air

W

weight

et sMEEEE

¢ = concentration of water in emulsion, % weight
and subscripts

air
fuel
oil
water
fuel A
fuel B
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For fuel A, the weight of air for combustion may be expressed by the

amount of oil woA in it and the amount of excess air XA used, as follows:

1+ XA

Yaa T 02315 %A Yoa

From the water concentration of fuel A

c - wA - wA
A Wea Woa * Yoa
Or
1 - CA
woA = cA wwA = (1~ CA) wa
Thus,
1 + XA
Waa T 02315 Aa (1mcy) Mgy (A-1)
Similarly,
1 + XB
a8 T 02315 Mg (1 - cp) Wgp (A-2)

Since the same o0il is used for the emulsions (fuels A and B)
AA = AB (A-3)

and the only difference between fuels A and B is the amount of water in
them, or the water concentrations Ca and - For the same fuel valve
opening, assuming the difference in density between fuels A and B is

small,

A-2
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With no change in air intake (air control being coupled to oil flow),

waA = waB (4-5)

Combining Equations A-1 through A-5,

- - ) -
(1 + XA) (1 cA) (1 + Xp) (1 cB)
or,
1 - cA
Xg = T- o (1 +Xx) -1 (A-6)

Equation A-6 gives the resulting excess air when fuel A is switched to
fuel B without any burner adjustment. It shows that the excess air is
increased when ¢, > c, and vice versa.

B A
Consider the following two cases:

(1) Cp = 0. This means that fuel A is oil. Equation A-6 becomes
_ 1+ XA
X3 = T-¢, "1
B

Clearly, switching from oil to emulsion will result in higher excess air

and a bright, clean flame, but a lower boiler efficiency.

(2) cg = 0. This means that fuel B is oil. Equation A-6 becomes

XB = (I-CA)(1+XA)-1

This indicates that switching from emulsion to oil will result in a

decrease in excess air and perhaps smoky flame.

A-3
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AFB (AFIT/LDE). Wright Patterson OH: (RDVA) AFESC'R&D Tvndall, FL: 82ABG/'DEMC. Williams AZ:
ABG/DEE (F. Nethers). Goodfellow AFB TX: AF Tech Office (Mgt & Ops). Tyndall, FL. CESCH,
Wright-Patterson; MAC/DET. Scott. IL: SAMSO/MNND. Norton AFB CA: Samso:Dec (Sauer)

Vandenburg. CA: Stinfo Librarv. Offutt NE

AFESC DEB. Tyndall. FL

ARMY ARRADCOM, Dover. NJ: Contracts - Facs Engr Directorate, Fort Ord. CA: DAEN-CWE-M,
Washington DC. DAEN-MPE-D Washington DC: DAEN-MPU. Washington DC; ERADCOM Tech Supp
Dir. (DELSD-L) Ft. Monmouth. NJ: Natick R&D Command (Kwoh Hu) Natick MA: Tech. Ref. Div.. Fort
Huachuca, AZ

ARMY - CERL Library. Champaign IL

ARMY CORPS OF ENGINEERS MRD-Eng. Div.. Omaha NE: Seattle Dist. Library. Scattle WA

ARMY CRREL G. Phetteplace Hanover. NH

ARMY ENGR DIST. Library. Portland OR

ARMY ENVIRON. HYGIENE AGCY HSE-EW Water Qual Eng Div Aberdeen Prov Grnd MD

ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe. Watertown MA

ARMY MISSILE R&D CMD SCI Info Cen (DOC) Redstone Arsenal. AL

ASO PWD (ENS M W Davis). Phildadelphia. PA

BUREAU OF RECLAMATION Code 1512 (C. Selander) Denver CO

CINCLANT CIV ENGR SUPP PLANS OFFR NORFOLK, VA

CINCPAC Fac Engrng Div (J44) Makalapa. HI

CNAVRES Code 13 (Dir. Facilities) New Orleans, LA

CNM Code MAT-04, Washington. DC: Code MAT-O8E. Washington. DC: NMAT - 044, Washington DC

CNO Code NOP-964. Washington DC: Code OP 987 Washington DC: Code OP-413 Wash. DC:. Code OPNAV
9B24 (H). OP-098. Washington. DC: OP987J, Washington. DC

COMFLEACT. OKINAWA PWD - Engr Div. Sasebo. Japan: PWO, Kadena, Okinawa: PWO. Sasebo. Japan

COMNAVMARIANAS Code N4, Guam

COMOCEANSYSLANT PW-FAC MGMNT Off Norfolk, VA

COMOCEANSYSPAC SCE. Pearl Harbor HI

COMSUBDEVGRUONE Operations Offr, San Diego. CA

DEFFUELSUPPCEN DFSC-OWE (Term Engrng) Alexandria. VA; DFSC-OWE. Alexandria VA

DOE Div Ocean Energy Sys Cons/Solar Energy Wash DC: F.F. Parry. Washington DC: INEL Tech. Lib. :
(Reports Section). Idaho Falls, ID |

DTIC Defense Technical Info Ctr/Alexandria. VA

DTNSRDC Code 4111 (R. Gierich), Bethesda MD

DTNSRDC Code 522 (Library). Annapolis MD ‘

ENVIRONMENTAL PROTI CTION AGENCY Reg. III Library. Philadelphia PA: Reg. VIII. 8M-ASL, |
Denver CO \

FLTCOMBATTRACENLANT PWO. Virginia Bch VA |

FMFLANT CEC Offr. Norfolk VA

GSA Assist Comm Des & Cnst (FAIA) D R Dibner Washington, DC : Off of Des & Const-PCDP (D Eakin)

Washington. DC
LIBRARY OF CONGRESS Washington. DC (Sciences & Tech Div)

e U N NN S
. yl l‘ I' 4 tl .

MARINE CORPS BASE Code 406. Camp Lejeune. NC: M & R Division, Camp Lejeune NC: Maint Off Camp
H , Pendleton. CA: PWD - Maint. Control Div. Camp Butler. Kawasaki. Japan: PWO Camp Lejeune NC:
F’ PWO. Camp Pendleton CA: PWO. Camp S. D. Butler. Kawasaki Japan
. p

) MARINE CORPS HQS Code LFF-2, Washington DC
C - MCAS Facil. Engr. Div. Cherry Point NC: CO. Kaneohe Bay HI: Code S4. Quantico VA: Facs Maint Dept -

C Operations Div. Cherry Point; PWD - Utilities Div. Iwakuni. Japan: PWD. Dir. Maint. Control Div.,

> Iwakuni Japan; PWO. Iwakuni, Japan: PWO. Yuma AZ

- MCDEC NSAP REP. Quantico VA

L“ MCLB B520. Barstow CA: Maintenance Officer. Barstow., CA: PWO. Barstow CA

p.r MCRD SCE. San Diego CA

P - NAF PWD - Engr Div. Atsugi. Japan: PWO. Atsugi Japan

- NALF OINC. San Diego. CA

L NARF Code 100, Cherry Point, NC: Code 612, Jax. FL; Code 640, Pensacola FL: SCE Norfolk. VA

p . NAS CO. Guantanamo Bay Cuba: Code 114, Alameda CA: Code 183 (Fac. Plan BR MGR): Code 187,

.- Jacksonville FL; Code 18700, Brunswick ME; Code 18U (ENS P.J. Hickev). Corpus Christi TX. Code 70,

L‘ Atlanta. Marietta GA: Code 8E. Patuxent Riv., MD: Dir of Engrng. PWD. Corpus Christi. TX: Dir. Maint.

k- Control Div., Key West FL: Dir. Util. Div.. Bermuda: Grover. PWD. Patuxent River. MD: Lakchurst, NJ:

- Lead. Chief. Petty Offr. PW/Self Help Div. Beeville TX: PW (J. Maguire). Corpus Christi TX: PWD - Engr

: Div Dir. Millington. TN: PWD - Engr Div. Gtmo. Cuba; PWD - Engr Div. Qak Harbor. WA: PWD -

Maint. Control Dir. Millington, TN: PWD Maint. Cont. Dir.. Fallon NV: PWD Maint. Div., New Orleans, i
N |
1) |
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Belle Chasse LA: PWD, Code 1821H (Pfankuch) Miramar. SD CA: PWD. Maintenance Control Dir..
Bermuda: PWD. Willow Grove PA: PWO Belle Chasse. LA; PWO Chase Field Beeville, TX: PWO Key
West FL: PWO Lakehurst. NJ: PWO Sigonella Sicily: PWO Whiting Fid. Milton FL; PWO. Dallas TX:
PWO. Glenview IL: PWO, Kingsville TX: PWO. Millington TN: PWO. Miramar. San Dicgo CA: PWO..
Moffett Field CA: SCE Norfolk, VA: SCE, Barbers Point HI: SCE. Cubi Point. R.P

NATL RESEARCH COUNCIL Naval Studies Board. Washington DC

NAVACT PWO. London UK

NAVACTDET PWO. Holy Lock UK

NAVAEROSPREGMEDCEN SCE. Pensacola FL

NAVAIRDEVCEN PWD. Engr Div Mgr. Warminster. PA

NAVAVIONICFAC PW Div Indianapolis. IN: PWD Deputy Dir. D701, Indianapolis, IN

NAVCHAPGRU Engincering Officer. Code 60 Williamsburg, VA

NAVCOASTSYSCEN CO. Panama City FL: Code 715 (J Quirk) Panama City. FL: Library Panama City. FL:
PWO Panama City. FL

NAVCOMMAREAMSTRSTA Code W-6l). Elec Engr. Wahiawa, HI: Maint Control Div.. Wahiawa, HI: PWO,
Norfolk VA: SCE Unit 1 Naples Ttaly: SCE. Wahiawa HI

NAVCOMMSTA Code 401 Nea Makri. Greece: PWD - Maint Control Div, Dicgo Garcia Is.: PWO. Exmouth.
Australia; SCE. Balboa., CZ

NAVEDTRAPRODEVCEN Technicai Librarv, Pensacola. FL

NAVEDUTRACEN Engr Dept (Code 42) Newport. RI

NAVENVIRHLTHCEN CO. NAVSTA Norfolk. VA

NAVEODTECHCEN Code 605, Indian Head MD

NAVFAC PWO. Brawdy Wales UK: PWO. Centerville Beh, Ferndale CA: PWO, Point Sur. Big Sur CA

NAVFACENGCOM Alexandria, VA: Code 03 Alexandria. VA: Code 03T (Essoglou) Alexandria. VA: Code
043 Alexandria. VA: Code (M4 Alexandria. VA: Code U454B Alexandria, Va: Code 04B3 Alcxandria. VA:
Code 051A Alexandria, VA Code 09MS34, Tech Lib. Alexandria. VA: Code 1113, Alexandria. VA: Code
111A Alexandria, VA: code 08T Alexandria. VA

NAVFACENGCOM - CHES DIV. Code 403 Washington DC: Code 405 Wash, DC: Contracts, ROICC.
Annapolis MD: FPO-1 Washington. DC; Library. Washington. D.C.

NAVFACENGCOM - LANT DIV. Code 111. Norfolk. VA: Code 403, Norfolk. VA: Eur. BR Deputy Dir.
Naples Italv; Library. Norfolk. VA: RDT&ELO 102A. Norfolk. VA

NAVFACENGCOM - NORTH DIV. Code 04 Philadelphia. PA; Code 09P Philadelphia PA: Code 1028,
RDT&ELOQ. Philadelphia PA: Code 111 Philadelphia, PA: Code 4012/AB (A. Bianchi) Philadelphia. PA:
Library, Philadelphia. PA: ROICC. Contracts, Crane IN

NAVFACENGCOM - PAC DIV. (Kyi) Code 101. Pearl Harbor. HE: CODE 09P PEARL HARBOR HI: Code
2011 Pearl Harbor, HI: Code 402, RDT&E. Pearl Harbor HI: Commander. Pearl Harbor. HI: Library.
Pearl Harbor, HI

NAVFACENGCOM - SOUTH DIV. Code 403, Gaddy. Charleston. SC. Code 90, RDT&ELO, Charleston SC:
Library, Charleston, SC

NAVFACENGCOM - WEST DIV. AROICC. Contracts, Twentynine Palms CA: Code 04B San Bruno. CA:
Library. San Bruno. CA: OYP/20 San Bruno. CA: RDT&ELO Code 2011 San Bruno. CA

NAVFACENGCOM CONTRACTS AROICC. NAVSTA Brooklyn. NY: AROICC. Quantico. VA; Colts Neck,
NJ: Contracts, AROICC, Lemoore CA: Dir. Eng. Div.. Exmouth. Australia: Eng Div dir. Southwest Pac.
Manila. PI. Engr. Div. (F. Hein). Madrid. Spain: NAS. Jacksonville. FL: OICC, Southwest Pac. Manila. Pl:
OICC-ROICC. NAS Oceana. Virginia Beach. VA: OICC ROICC. Balboa Panama Canal: OICC'ROICC.
Norfolk. VA:; ROICC AF Guam: ROICC Code 495 Portsmouth VA: ROICC Kev West FL: ROICC MCAS
El Toro: ROICC Rota Spain: ROICC, Diego Garcia Island: ROICC. Keflavik. Iceland: ROICC. NAS.
Corpus Christi. TX: ROICC. Pacific. San Bruno CA: ROICC. Point Mugu. CA: ROICC. Yap;
ROICC-OICC-SPA. Norfolk, VA

NAVFORCARIB Commander (N42), Puerto Rico

NAVHOSP PWD - Engr Div. Beaufort. SC

NAVMAG PWD - Engr Div. Guam: SCE. Guam: SCE. Subic Bay. R.P.

NAVOCEANSYSCEN Code 4473 Bayside Library. San Diego. CA: Code 4473B (Tech Lib) San Dicgo. CA:
Code 523 (Hurley). San Diego. CA: Code 6700, San Diego. CA: Code 811 San Diego. CA

NAVORDMISTESTFAC PWD - Engr Dir. White Sands. NM

NAVORDSTA PWD - Dir. Engr Div. Indian Head. MD: PWO. Louisville KY

NAVPETOFF Code 30. Alexandria VA

NAVPETRES Director. Washington DC

NAVPHIBASE CO. ACB 2 Norfolk, VA: Code S3T. Norfolk VA: SCE Coronado. SD.CA

NAVRADRECFAC PWO. Kami Seva Japan

NAVREGMEDCEN PWD - Engr Div. Camp Lejeune. NC: PWO Portsmouth, VA: PWO. Camp Lejeune. NC

NAVREGMEDCEN PWO. Okinawa. Japan

NAVREGMEDCEN SCE: SCE San Dicgo. CA: SCE. Camp Pendieton CAL SCE. Guam: SCE. Newport. Rl
SCE. Oukland CA

NAVREGMEDCEN SCE. Yokosuka. Japan

NAVSCOLCECOFF C35 Port Hueneme. CA: CO. Code C44A Port Hueneme. CA
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NAVSCSOL PWQ. Athens GA

NAVSEASYSCOM Code 0325, Program Mgr. Washington. DC: SEA 04E (L Kess) Washington. DC; SEAUSE].
Washington. D.C.

NAVSECGRUACT Facil. Off., Galeta Is. Panama Canal: PWO. Adak AK: PWO, Edzell Scotland: PWO.
Puerto Rico: PWO. Torn Sta. Okinawa

NAVSECSTA PWD - Engr Div. Wash.. DC

NAVSHIPREPFAC SCE Subic Bay

NAVSHIPYD (Code 452) Shop 02 Portsmouth, VA: Code 202.4. Long Beach CA: Code 202.5 (Library) Puget
Sound. Bremerton WA: Code 380, Portsmouth, VA: Code 382.3, Pearl Harbor. HI: Code 400, Puget Sound:
Code 410, Mare Is.. Vallejo CA: Code 440 Portsmouth NH: Code 440, Norfolk: Code 440, Puget Sound.
Bremerton WA: Code 453 (Util. Supr). Vallejo CA: L.D. Vivian: Library, Portsmouth NH: PW Dept. Long
Beach, CA: PWD (Code 420) Dir Portsmouth, VA: PWD (Code 450-HD) Portsmouth., VA: PWD (Code
453-HD) SHPO 03, Portsmouth. VA: PWD (Code 457-HD) Shop 07. Portsmouth. VA: PWD (Code 460)
Portsmouth, VA: PWO. Bremerton, WA; PWO, Mare Is.: PWO. Puget Sound: SCE, Pearl Harbor HI

NAVSTA Adak. AK: CO, Brooklyn NY: Code 4, 12 Marine Corps Dist. Treasure Is.. San Francisco CA: Dir
Engr Div. PWD. Mayvport FL: Dir Mech Engr 37WC93 Norfolk. VA: Engr. Dir.. Rota Spain: Long Beach.
CA: Maint. Cont. Div.. Guantanamo Bay Cuba: Maint. Div. Dir'Code 531, Rodman Panama Canal: PWD -
Engr Dept. Adak. AK: PWD - Engr Div. Midway Is.. PWO. Guantanamo Bay Cuba: PWO. Keflavik
Iceland: PWO. Mayport FL: SCE. Guam: SCE. Pearl Harbor HI: SCE. San Diego CA: SCE. Subic Bay.
R.P.

NAVSUBASE SCE. Pcarl Harbor HI

NAVSUPPACT CO. Naples. Italy: PWO Naples Taly

NAVSUPPFAC PWD - Maint. Control Div. Thurmont. MD

NAVSUPPO PWO. La Maddalena. Italy

NAVSURFWPNCEN PWO. White Oak. Silver Spring. MD

NAVTECHTRACEN SCE. Pensacola FL

NAVTELCOMMCOM Code 53. Washington. DC

NAVWPNCEN Code 2636 China Lake: Code 3803 China Lake. CA: PWO (Code 266) China Lake. CA: ROICC

(Code 702). China Lake CA

NAVWPNSTA (Clebak) Colts Neck. NJ. Code 0092, Concord CA: Code U92A. Seal Beach. CA: Maint. Control
Dir.. Yorktown VA

NAVWPNSTA PW Office Yorktown. VA

NAVWPNSTA PWD - Maint Control Div, Charleston. SC: PWD - Maint. Control Div.. Concord. CA; PWD -
Supr Gen Engr. Seal Beach, CA; PWO. Charleston. SC; PWO. Seal Beach CA

NAVWPNSUPPCEN Code 9 Crane IN

NCBU 405 OIC. San Diego. CA

NCTC Const. Elec. School. Port Hueneme. CA

NCBC Code 10 Davisville. RI: Code 1S5, Port Hueneme CA: Code 155, Port Hueneme CA: Code 156, Port
Bueneme. CA; Code 25111 Port Hueneme. CA: Code 400. Gulfport MS: Code 430 (PW Engrng) Gulfport.
MS: Code 470.2. Gulfport. MS: NEESA Code 252 (P Winters) Port Hueneme. CA: PWO (( ode 80) Port
Hueneme. CA: PWO. Davisville RE: PWO. Gulfport. MS

NMCB FIVE. Operations Dept: THREE. Operations Off.

NOAA Library Rockville, MD

NRL Code 5800 Washington, DC; Code 5843 (F. Rosenthal) Washington, DC

NSC Code 34.1 Norfolk. VA

NSD SCE. Subic Bay. R.P.

NSWSES Code 0150 Port Hueneme. CA

NUSC Code 131 New London. CT: Code EA123 (R.S. Munn), New London CT. Code SB 331 (Brown).
Newport RI

OFFICE SECRETARY OF DEFENSE OASD (MRA&L) Dir. of Energy. Pentagon. Washington. DC

ONR Code 221, Arlington VA: Code 700F Arlington VA

PACMISRANFAC HI Area Bkg Sands. PWO Kcekaha, Kauai. HI

PHIBCB 1 P&E. San Dicgo. CA

PMTC Pat. Counsel. Point Mugu CA

PWC ACE Office Norfolk. VA: CO Norfolk, VA: CO. (Cade 10), Oakland. CA: CO. Great Lakes IL: CO.
Pearl Harbor HI; Code 10, Great Lakes. IL: Code 105 Qakland., CA: Code 110, Great Lakes. IL; Code 110,
QOakland. CA: Code 120. Qakland CA: Code 200. Great Lakes IL. Code 200, Guam: Code 400, Great
Lakes. IL. Code 400. Oakland. CA: Code 40, Peart Harbor. HI: Code 400, San Diego. CA: Code 420,
Great Lakes. IL: Code 420, Oakland. CA: Code 424. Norfolk. VA: Code S00 Norfolk, VA: Code S0SA
Oakland. CA: Code 600, Great Lakes. IL: Code 610, San Dicgo Ca: Code 700, Great Lakes. IL: Library,
Code 120C. San Diego, CA: Library. Code 154, Great Lakes. IL: Library., Guam: Library, Norfolk. VA
Library. Oakland, CA: Library. Pearl Harbor, HI: Library, Pensacola. FL: Library. Subic Bay. R.P.;
Library, Yokosuka. JA: Util Dept (R Pascua) Pearl Harbor. HI: Utilities Officer. Guam

SPCC PWO (Code 120) Mechanicsburg PA

SUPANX PWO. Williamsburg VA

TVA Smelser. Knoxville. Tenn.: Solar Group, Arnold. Knoxville. TN
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U.S. MERCHANT MARINE ACADEMY Kings Point. NY (Reprint Custodian)

USAF REGIONAL HOSPITAL Fairchild AFB. WA

USCG (Smith). Washington. DC: G-MMT-4/82 (J Spencer)

USDA Forest Service Reg 3 (R. Brown) Albuquerque. NM

USNA Ch. Mech. Engr. Dept Annapolis MD: ENGRNG Div. PWD. Annapolis MD: Encres ©nviron Study
Grp. Annapolis. MD: Environ. Prot. R&D Prog. (J. Williams). Annapolis MID: Mech Engr. Dept. (C.
Wu). Annapolis MD: PWO Annapolis MD: USNA/Sys Eng Dept. Annapolis. MD

USS FULTON WPNS Rep. Offr (W-3) New York, NY

ARIZONA State Energy Programs Off.. Phoenix AZ

AUBURN UNIV. Bidg Sci Dept. Lechner. Auburn, AL

BERKELEY PW Engr Div. Harrison, Berkeley, CA

BONNEVILLE POWER ADMIN Portland OR (Energy Consrv. Off.. D. Davey)

BROOKHAVEN NATL LAB M. Steinberg, Upton NY

CALIFORNIA STATE UNIVERSITY LONG BEACH. CA (CHELAPATI)

CONNECTICUT Office of Policy & Mgt. Energy. Div. Hartford, CT

CORNELL UNIVERSITY Ithaca NY (Serials Dept. Engr Lib.)

DAMES & MOORE LIBRARY LOS ANGELES. CA

DRURY COLLEGE Physics Dept. Springfield. MO

FLORIDA ATLANTIC UNIVERSITY Boca Raton. FL (McAllister)

FOREST INST. FOR OCEAN & MOUNTAIN Carson City NV (Studies - Library)

GEORGIA INSTITUTE OF TECHNOLOGY (LT R. Johnson) Atlanta. GA: Col. Arch, Benton. Atlanta. GA

HARVARD UNIV. Dept. of Architecture. Dr. Kim, Cambridge. MA

HAWAI STATE DEPT OF PLAN. & ECON DEV. Honolulu HI {Tech Info Ctr)

WOODS HOLE OCEANOGRAPHIC INST. Woods Hole MA (Winget)

KEENE STATE COLLEGE Keene NH (Cunningham)

LEHIGH UNIVERSITY Bethlehem PA (Linderman Lib. No.30, Flecksteiner)

LOUISIANA DIV NATURAL RESOURCES & ENERGY Div Of R&D. Baton Rouge. LA

MAINE OFFICE OF ENERGY RESOURCES Augusta. ME

MISSOURI ENERGY AGENCY Jefferson City MO

MIT Cambridge MA (Rm 10-500. Tech. Reports. Engr. Lib.); Cambridge. MA (Harleman)

MONTANA ENERGY OFFICE Anderson. Helena, MT

NATURAL ENERGY LAB Library, Honolulu, HI

NEW HAMPSHIRE Concord NH (Governor’s Council on Energy)

NEW MEXICO SOLAR ENERGY INST. Dr. Zwibel Las Cruces NM

NY CITY COMMUNITY COLLEGE BROOKLYN. NY (LIBRARY)

NYS ENERGY OFFICE Library. Albany NY

POLLUTION ABATEMENT ASSOC. Graham

PURDUE UNIVERSITY Lafayette, IN (CE Engr. Lib)

SCRIPPS INSTITUTE OF OCEANOGRAPHY LA JOLLA. CA (ADAMS)

SEATTLE U Prof Schwaegler Seattle WA

SRI INTL Phillips. Chem Engr Lab, Menlo Park, CA

STATE UNIV. OF NEW YORK Fort Schuyler, NY (Longobardi)

TEXAS A&M UNIVERSITY W.B. Ledbetter College Station, TX

UNIVERSITY OF CALIFORNIA Energy Engineer, Davis CA: LIVERMORE. CA (LAWRENCE
LIVERMORE LAB. TOKARZ): UCSF, Physical Plant. San Francisco. CA

UNIVERSITY OF DELAWARE Newark. DE (Dept of Civil Engineering. Chesson)

UNIVERSITY OF HAWAII HONOLULU, HI (SCIENCE AND TECH. DIV.)

UNIVERSITY OF ILLINOIS (Hall) Urbana. IL: URBANA. IL (LIBRARY)

UNIVERSITY OF MASSACHUSETTS (Heronemus), ME Dept. Amherst. MA

UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)

UNIVERSITY OF TEXAS Inst. Marine Sci (Library). Port Arkansas TX

UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TX (THOMPSON)

UNIVERSITY OF WASHINGTON Seattle WA (E. Linger)

UNIVERSITY OF WISCONSIN Milwaukee WI (Ctr of Great Lakes Studics)

ARVID GRANT OLYMPIA. WA

ATLANTIC RICHFIELD CO. DALLAS. TX (SMITH)

BECHTEL CORP. SAN FRANCISCO. CA (PHELPS)

BROWN & ROOT Houston TX (D. Ward)

CHEMED CORP Lake Zurich IL (Dearborn Chem. Div.Lib.)

COLUMBIA GULF TRANSMISSION CO. HOUSTON. TX (ENG. LIB.)

DESIGN SERVICES Beck. Ventura. CA

DIXIE DIVING CENTER Decatur, GA

DURLACH. O'NEAL. JENKINS & ASSOC. Columbia SC

LITHONIA LIGHTING Application eng. Dept. (B. Helton), Convers. GA 30207

MATRECON Oakland. CA (Haxo)
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MCDONNEL AIRCRAFT CO. (Fayman) Engrng Dept.. St Lows, MO
MEDERMOTT & CO. Diving Division. Harvev. LA

NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (lech. Lib)
PACIFIC MARINE TECHNOLOGY (M. Wagner) Duvall, WA

PG&E Librarv. San Francisco. CA

PORTLAND CEMENT ASSOC. Skokic I (Rsch & Dev Lab, Lik)

RAYMOND INTERNATIONAL INC. E Colle Soil Tech Dept. Pennsiauken. NJ
SANDIA LABORATORIES Albuquerque. NM (Vortman): Library Div.. Livermore CA
SCHUPACK ASSOC SO. NORWALK. CT (SCHUPACK)

SHELL DEVELOPMENT CO. Houston TX (C. Sellars Jr.)

TEXTRON INC BUFFALO. NY (RESEARCH CENTER LIB.)

TRW SYSTEMS REDONDO BEACH. CA (DAI)

UNITED TECHNOLOGIES Windsor Locks CT (Hamilton Std Div.. Library)
WARD. WOLSTENHOLD ARCHITECTS Sacramento, CA

WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib. Brvan): Library. Pittsburgh PA

WM CLAPP LABS - BATTELLE DUXBURY. MA (LIBRARY)
BRAHTZ La Jolla, CA

KETRON, BOB Ft Worth, TX

KRUZIC, T.P. Silver Spring. MD

LAFKIN Seattle, WA

BROWN & CALDWELL Saunders. E.M./Oakland. CA

T.W. MERMEL Washington DC

WALTZ Livermore. CA
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